
SNUG 2013 1 Applications of custom UVM report servers

Applications of Custom UVM Report Servers

Gordon McGregor

Verilab, Inc.
Austin, Texas

www.verilab.com

ABSTRACT

The Universal Verification Methodology (UVM) provides a feature-rich set of reporting
and message handling objects. These message handlers are being improved in UVM
version 1.2 to provide an OOP-style messaging infrastructure. This paper discusses the
existing handlers in UVM 1.1 and previews the implementation coming in UVM 1.2.

A common task in many verification environments is customizing the log format and this
paper will show how to do this for the UVM 1.1 and UVM 1.2 base class libraries.
Methods to extend both implementations to produce log files using markup text formats
will be discussed. Several use cases for these structured text files are also considered,
with examples using an XML based approach that can be extended to other markup
formats or SQL database storage, as needed. An interactive GUI, built to manipulate this
structured log format, is demonstrated that enables complex filtering and dynamic
message reconstruction as well as command line filtering approaches to produce custom
reports.

SNUG 2013 2 Applications of custom UVM report servers

Table of Contents
1.	 Introduction .. 4	
2.	 The Problem With the Standard Message Format ... 5	
3.	 Replacing the Standard Message Handler in UVM 1.1 ... 6	
4.	 Changes in UVM 1.2 ... 8	
5.	 A Better Approach: Markup Log Formats ... 11	
6.	 Generating XML in SystemVerilog ... 12	
7.	 Custom Log Reconstruction .. 14	
8.	 GUI to Interactively Filter Messages ... 14	
9.	 Managing Large Log Files ... 16	
10.	 Conclusions and Future Work ... 16	
11.	 Source Code ... 17	
12.	 References .. 17	
13.	 Unified UVM_1_1 and UVM_1_2 XML Server ... 18	
14.	 Deployment of XML report server .. 23	
15.	 UVM XML Style sheet for log parsing ... 24	
16.	 Python XML Log viewer ... 25	

Table of Figures
Figure 1 Example message with all meta-data enabled .. 5	
Figure 2 Example message removing __FILE__ and __LINE__ info 5	
Figure 3 Example message with abbreviated IDs ... 5	
Figure 4 Example custom message ... 6	
Figure 5 Extending the default report server implementation for UVM 1.1 7	
Figure 6 Instantiating a custom report server ... 8	
Figure 7 The new UVM 1.2 report message object’s fields ... 8	
Figure 8 Extending the default report server implementation for UVM 1.2 9	
Figure 9 Adding verbosity display information to a custom report server for UVM 1.1 . 10	
Figure 10 XML log header format .. 12	
Figure 11 XML log footer format ... 12	
Figure 12 XML message format ... 12	
Figure 13 Generator functions for XML attributes and elements 13	
Figure 14 Generating an XML element in SystemVerilog ... 13	

SNUG 2013 3 Applications of custom UVM report servers

Figure 15 Handling special case characters for XML formating 13	
Figure 16 Python example of log file processing ... 14	
Figure 17 Example of dynamically reformatting a message .. 15	
Figure 18 Example of filtering on verbosity ... 15	
Figure 19 Filtering on a message id .. 16	

SNUG 2013 4 Applications of custom UVM report servers

1. Introduction

The Universal Verification Methodology (UVM) [1] is the most commonly used
verification methodology in the industry. When using the UVM, much of a verification
engineer’s time is spent running and debugging testcases, both while developing a
testbench and also when running regressions and driving towards coverage closure. The
UVM provides a rich set of logging objects that are used to produce text log files, with
fine-grained control over the levels of verbosity and message filtering. These logs, along
with waveforms, are typically the main source of information used when debugging a
failing test. Powerful IDEs and GUI interactive debugging tools are available to debug
SystemVerilog, but the length of simulation time often makes their use less practical than
using the text logs and waveforms to find the cause of a failure. Simulations produce
copious log messages, from many sources within the testbench, tracking the operation of
the various subsystems. It can be difficult to quickly get a sense of the flow of the test,
while still recording sufficient detail to find the root cause of an issue.

Tools are available [4, 5] that post process log files and attempt to extract additional
meaning or structure from a UVM log. These tools are entirely dependent on the specific
format string used within the UVM report handler to construct messages. Any change
made to this format typically will break tools that parse UVM logs. These tools use
regular expressions to extract structure from the messages so require knowledge about the
structure of each message and expect fields to be in a known order and relationship. This
tight coupling between log parsers and the message generator is not ideal and makes the
current solutions less flexible than they could be.

While these post-processing tools are tied to the message format within the library, it is a
frequent request within verification teams to be able to change that message format.
There are several motivations for this. Often the main string of the message is obfuscated
by the surrounding meta-data, describing the originating object, originating file, message
severity, plus several other pieces of ancillary data about any given message. While this
meta-data can be very useful in understanding the context of a given entry, it also tends to
distract the eye when trying to understand the flow of a test. This is particularly true of
the __FILE__ and __LINE__ macros that provide detailed information of the originating
source file and line number for a given message. This can be vital, in certain
circumstances, to find where a message is coming from, but the rest of the time it is
almost completely redundant from the perspective of trying to understand a test. As a
result, most users run their simulations with this information disabled, only enabling it
when truly necessary. This requires a repeat simulation run to capture this additional data,
which wastes time and compute cycles. A more useful situation would be to be able to
selectively view this sort of meta-data, on demand, without having it visible the majority
of the time.

SNUG 2013 5 Applications of custom UVM report servers

2. The Problem With the Standard Message Format
As an example of the problem, Figure 1 shows a message with all the available meta-
data. The actual message gets pushed far to the right of the screen, making it difficult to
even view without line wrapping. In the example below, the real ‘message’ is not visible
until column 230, or, more typically, wrapped so that a useful message would appear on
every third line. This is in a simple testbench (the Ubus example that ships with the
UVM source code), with a shallow hierarchy and with a not very deep file structure.
More complex file structures and hierarchies push the message further to the right.

UVM_INFO
/home/gmcgregor/src/sv/uvm_latest/distrib/examples/integrated/ubus/sv/ubus_master_monitor
.sv(205) @ 3030: uvm_test_top.ubus_example_tb0.ubus0.masters[0].monitor
[uvm_test_top.ubus_example_tb0.ubus0.masters[0].monitor] Covergroup 'cov_trans' coverage:
32.083332

Figure 1 Example message with all meta-data enabled

If we then disable the occasionally useful __FILE__ and __LINE__ context information
from the message (by defining UVM_REPORT_DISABLE_FILE_LINE at compilation
time) we get a message similar to the one shown in Figure 2.

UVM_INFO @ 3030: uvm_test_top.ubus_example_tb0.ubus0.masters[0].monitor
[uvm_test_top.ubus_example_tb0.ubus0.masters[0].monitor] Covergroup 'cov_trans' coverage:
32.083332

Figure 2 Example message removing __FILE__ and __LINE__ info

Even with the file information removed, the remaining meta-data, particularly the object
name and context ID fields, push the message far to the right hand columns of the log, or
wrapped around making the log structure difficult to visually parse. This example also
highlights a common problem where the message id field is provided by get_full_name()
or get_type_name(). This is in general a bad idea as it usually just adds redundant
information to the log. The object name is already included prior to the context ID in any
given message string. Using get_type_name() does occasionally provide some useful
information, if type overrides are being used but often this is redundant in the log. This
convention of using get_full_name() or get_type_name() was shown in some of the
standard UVM examples and as a result has spread in tutorials. A better approach is to
define useful additional contexts for messages and use those in place of repeating the type
or object naming. (e.g., NOVIF for missing virtual interfaces, COV for coverage related
messages and so on). Making these simplifications would give messages such as the one
shown in Figure 3. In this case the message starts in column 79, right at the point that
most tools will wrap messages and still continues on to the second line.

UVM_INFO @ 3030: uvm_test_top.ubus_example_tb0.ubus0.masters[0].monitor [COV] Covergroup
'cov_trans' coverage: 32.083332

Figure 3 Example message with abbreviated IDs

The style of message shown in Figure 3 is about as simplified as messages can get,
without modifying the report handler. The desire to get more readable messages is often
the motivation for changing this. There are also some additional reasons. The default
messages do not indicate what level verbosity was used for a given message, which is a

SNUG 2013 6 Applications of custom UVM report servers

strange oversight. Message verbosities, (e.g., UVM_HIGH, UVM_LOW,
UVM_DEBUG, etc.) are a useful indicator of the level of importance of a given message
– with the UVM_LOW and UVM_NONE verbosities being typically the most important
messages, giving an overview of the test flow and the higher verbosity messages
providing increasing detail. The default handler only provides the severity context for a
message (e.g., UVM_INFO, UVM_ERROR). Another reason to change the message
format is to use different time unit formatting (either by changing the units used or
adding unit suffixes (e.g., ns). One final reason is to constrain the maximum size of
message fields, such as the name and context id fields, so that for example, only the final
20 characters of the name are used, which is often sufficient to provide useful context
without the entire hierarchy.

UVM_HIGH (3030ns) masters[0].monitor [COV] Covergroup 'cov_trans' coverage: 32.083332

Figure 4 Example custom message

Figure 4 provides an example of how a custom message might be structured, using the
verbosity in place of severity for UVM_INFO messages, while potentially still using the
severity for warnings and errors. The name field is truncated to the last two hierarchical
identifiers and the context ID uses ‘COV’ to indicate the coverage context for the
message. The main message in this case now starts on column 43, which is some
improvement over the original column 230 with all meta-data included, in Figure 1.

Given this example, the motivation to modify the message handler is clear. Luckily the
UVM provides a simple mechanism to achieve this.

3. Replacing the Standard Message Handler in UVM 1.1
Every object in the UVM extends from the basic uvm_report_object class, which
implements the standard reporting methods. (uvm_report_info, uvm_report_warning,
uvm_report_error, uvm_report_fatal and other supporting methods). The
implementation of these methods delegate the reporting task to a uvm_report_handler
instance and its associated report method. The report method in the handler implements
some severity level filtering, then passes the message on to the singleton global instance
of a uvm_report_server. The actual message composition and logging occurs in this
global report server.

There are also global static versions of the reporting methods that are used when
messages are generated that aren’t within the context of a UVM object. These static
implementations use an instance of uvm_top to access the reporting subsystem.

For each of the reporting methods, there are equivalent macro implementations. It is
recommended that you use the macro versions of the reporting methods in most cases
because of some efficiencies they provide and common errors they help avoid. The
`uvm_info macro is a replacement for uvm_report_info. The macros will only call the
underlying method if the verbosity controls are such that the message would be printed.
Often messages are constructed using expensive string operations such as, $sformatf and
particularly for high verbosity messages, these may be being called frequently while
never being displayed. The macros help to curtail the processing overhead in these cases.

SNUG 2013 7 Applications of custom UVM report servers

Using the macros also enforces a verbosity setting of UVM_NONE for the warning, error
and fatal types of messages. This avoids mistakenly disabling these messages by setting a
lower verbosity threshold. Particular warnings or errors can still be controlled via the
report handler methods, but the macros avoid a common pitfall with the verbosity
settings.

To change the default message format, you simply have to replace the global report
server with your own implementation, as shown in Figure 5. This custom report server is
sub classed from uvm_report_server and for the basic changes, such as those described in
section 1, only needs to re-implement two methods; the constructor and the compose
message method.

import uvm_pkg::*;
`include "uvm_macros.svh"

class custom_report_server extends uvm_report_server;
 uvm_report_server old_report_server;
 uvm_report_global_server global_server;

 function new(string name = "custom_report_server");
 super.new();
 set_name(name);
 global_server = new();
 old_report_server = global_server.get_server();
 global_server.set_server(this);
 endfunction

virtual function string compose_message(
 uvm_severity severity,
 string name,
 string id,
 string message,
 string filename,
 int line
);
 uvm_severity_type sv;
 string time_str;
 string line_str;

 sv = uvm_severity_type'(severity);
 $swrite(time_str, "%0t", $realtime);

 case(1)
 (name == "" && filename == ""):
 return {sv.name(), " @ ", time_str, " [", id, "] ", message};
 (name != "" && filename == ""):
 return {sv.name(), " @ ", time_str, ": ", name, " [", id, "] ", message};
 (name == "" && filename != ""):
 begin
 $swrite(line_str, "%0d", line);
 return {sv.name(), " ",filename, "(", line_str, ")", " @ ", time_str, "
[", id, "] ", message};
 end
 (name != "" && filename != ""):
 begin
 $swrite(line_str, "%0d", line);
 return {sv.name(), " ", filename, "(", line_str, ")", " @ ", time_str, ":
", name, " [", id, "] ", message};
 end
 endcase
 endfunction

Figure 5 Extending the default report server implementation for UVM 1.1

SNUG 2013 8 Applications of custom UVM report servers

To use the custom server, create an instance of it within your test class as shown in
Figure 6,

`include "custom_report_server.svh"

// Base Test
class example_base_test extends uvm_test;

 `uvm_component_utils(example_base_test)
 custom_report_server report_server = new();

Figure 6 Instantiating a custom report server

That’s all that is required. The actual message customization occurs in the
compose_message, where you can change the existing format, in each of the return lines,
or replace the existing code to generate a return message format of your own from
scratch.

4. Changes in UVM 1.2
The reporting subsystem in UVM version 1.2 is receiving a revamp, to streamline some
of the method calls and present a more object-oriented API. The default message formats
should be the same between UVM 1.1 and UVM 1.2 to keep the base class library
backward compatible, particularly for tools that use log files as golden references.

Instead of passing each piece of meta-data as a separate argument, uvm_report_message
objects have been introduced, which help to simplify message passing through the
reporting hierarchy. Additionally the message verbosity is now contained within this
message object, making it simpler to include this within the message output, just by
changing the compose_message function. The relevant fields within the
uvm_report_message object are shown in Figure 7.

class uvm_report_message extends uvm_object;

 uvm_severity_type severity;
 string id;
 string message;
 int verbosity;
 string filename;
 string context_name;
 uvm_action action;

Figure 7 The new UVM 1.2 report message object’s fields

The basic approach for replacing the global report server remains the same, with a few
small changes, as shown in Figure 8. Note in particular that the uvm_report_server
constructor now takes a name argument, so there is no need for a distinct set_name call in
the constructor of the new report server. The main change is that the compose function
has been renamed to compose_report_message from compose_message and it now takes
one uvm_report_message argument.

SNUG 2013 9 Applications of custom UVM report servers

import uvm_pkg::*;
`include "uvm_macros.svh"

class custom_report_server extends uvm_report_server;
 uvm_report_server old_report_server;
 uvm_report_global_server global_server;

 function new(string name = "custom_report_server");
 super.new(name);
 global_server = new();
 old_report_server = global_server.get_server();
 global_server.set_server(this);
 endfunction

function string convert_verbosity_to_string(int verbosity);
 uvm_verbosity l_verbosity;

 if ($cast(l_verbosity, verbosity)) begin
 convert_verbosity_to_string = l_verbosity.name();
 end else begin
 string l_str;
 l_str.itoa(verbosity);
 convert_verbosity_to_string = l_str;
 end
 endfunction

virtual function string compose_report_message(uvm_report_message report_message);

 string sev_string;
 string verbosity_string;
 string filename_line_string;
 string time_str;
 string line_str;
 string context_str;

 sev_string = report_message.severity.name();
 verbosity_string = convert_verbosity_to_string(report_message.verbosity);

 if (report_message.filename != "") begin
 line_str.itoa(report_message.line);
 filename_line_string = {report_message.filename, "(", line_str, ") "};
 end

 // Make definable in terms of units.
 $swrite(time_str, "%0t", $time);

 if (report_message.context_name != "")
 context_str = {"@@", report_message.context_name};

 compose_report_message = {sev_string, " ", filename_line_string, "@ ",
 time_str, ": ", report_message.report_handler.get_full_name(), context_str,
 " [", report_message.id, "] ", report_message.convert2string()};

 endfunction

Figure 8 Extending the default report server implementation for UVM 1.2

Note that the verbosity is now available in the compose function and there is a new
function convert_verbosity_to_string. As the verbosity is an integer with some defined
intermediate values (UVM_DEBUG, UVM_HIGH) etc., the translation to a string has to
consider the potential to use those intermediate values.

One common modification to make to the message format is to replace the severity string
with the verbosity level, in cases where the severity is UVM_INFO and leave it as the
severity string for the other levels of severity. This means that warnings, errors and fatals
are marked as before, but adding additional INFO verbosity information, without

SNUG 2013 10 Applications of custom UVM report servers

increasing the overall message width. This can be done easily in the compose function in
the reporting hierarchy, once the verbosity is available.

In contrast, if you are using version 1.1 or older versions of the UVM, it is a little more
involved to modify the library to access verbosity information in a message composition
function. The approach, shown in Figure 9, is to override the function report that calls the
compose_message function, to generate the message string. At this point, replace the
compose_message call with a similar function, which takes an additional verbosity
argument. This function then generates the message that will be passed on to the
process_report function as normal.

 virtual function void report(

 // … portions of the report function removed for clarity

 if(report_ok) begin
 m = custom_compose_message(severity, verbosity_level, name, id, message, filename,
line);
 process_report(severity, name, id, message, a, f, filename,
 line, m, verbosity_level, client);
 end
 endfunction

 virtual function string custom_compose_message (
 uvm_severity severity,
 int verbosity_level,
 string name,
 string id,
 string message,
 string filename,
 int line
);
 // … compose message as normal

Figure 9 Adding verbosity display information to a custom report server for UVM 1.1

So far, we’ve covered how to extend and replace the existing text based message logging
server. This does allow a user to change the format of each message, but it has limited
usefulness. Ideally, all of the pieces of meta-data about a message would be available and
the user should be able to pick and chose dynamically which pieces of the message are
shown. Occasionally you will care about the __FILE__ and __LINE__ information, so it
should be available without re-running a simulation. At other times, the context
information or hierarchical location of a message source is critical information and it
should be possible to see it. The majority of the time this information just gets in the way
of seeing what is happening in a given test. A more useful approach would be to allow
the message composition to be controlled dynamically by a viewer, allowing the
messages to be reformatted to change the information provided.

Perhaps more importantly than this reformatting of the message is the ability to
selectively filter and fold messages throughout the logfile. A very useful capability is to
change the verbosity level of the log messages shown; collapsing down to a
UVM_NONE or UVM_LOW level of verbosity to understand the high-level flow of a
test, and then expand particular sections to higher levels of verbosity to dive into the
details of what is happening in a test. Additionally, being able to filter on the other meta-
data in the message can be a very powerful technique; isolating messages from a single
monitor or driver, tracing a given transaction through the log and so on.

SNUG 2013 11 Applications of custom UVM report servers

It is possible to re-extract or infer all of this meta-data from a fully expanded text log,
using regular expressions and similar parsing techniques, but there is a simpler, more
reliable and more powerful method available, using standard techniques from the
software world.

5. A Better Approach: Markup Log Formats
Markup languages are often used to create combined human- and machine-readable
documents. In particular, the Extensible Markup Language (XML) [2] has seen
widespread industry adoption. This standard format defines an approach based on tags to
demark data, along with associated metadata. XML is designed to be extended to
implement a variety of different document formats and is well suited to the logging
problem discussed in this paper. Rather than composing the message along with selected
pieces of metadata at runtime, we can store each message with all of the relevant
metadata in an XML formatted log file. The selection of relevant metadata and
construction of the final message to display can then be deferred to a later time. This log
file can then post-processed in a variety of different ways to generate log messages.

Post processing an XML format is much less error-prone than using regular expressions
to parse a plaintext log file. Changes in the metadata will not break tools that understand
the existing attributes. The tools easily handle minor changes in format and there are a
large number of standardized approaches to manipulating XML. Filtering standards, such
as EXtensible Stylesheet Language (XSLT) [3], can be used to provide a style sheet to
quickly process a log to present a designer-friendly overview of the flow of a test,
without diving into the details. Log checkers can more accurately search for error
conditions, by looking for actual errors, without being sensitive to valid, informational
messages such as ‘inserting an error’. These types of messages about error injection
often require waivers or obscure spellings (e.g., e_r_r_o_r) to avoid incorrectly indicating
a failing test when plain text logs are used.

Given an XML based log it is also straightforward to develop interactive viewing and
filtering tools or custom analyzers as will be shown later.

One criticism of XML is that it is somewhat heavyweight, with tags surrounding every
feature in the file. Lighter weight formats like the JavaScript Object Notation (JSON) and
YAML Ain’t Markup Language (YAML) that use structure and indentation were also
considered but have been rejected in favor of XML, because of the improved reliability
of the XML format. If stray messages get into the log, from other parts of the simulation
(e.g., an IP using $display statements or other non-UVM messaging formats) these can be
more easily recognized by an XML parser and captured as alternative message sources.
In the lighterweight markup languages, these sort of unstructured messages injected in
the log would cause parse errors that would be difficult to recover from in an elegant
way.

For this application, we define an XML format, without actually implementing a formal
schema. The structure is kept very simple. All log documents start with an XML header,

SNUG 2013 12 Applications of custom UVM report servers

displayed by overriding the report_header method in the uvm_report_server. This
method allows you to print a custom header prior to logging messages and is perfect for
constructing an XML log file. Most of the header is standard boilerplate. Note that we
provide a style sheet (uvm.xsl) which provides a mechanism to specify a standard way to
render the log file in a web browser. The final tag of the header is the <log> tag, that is
being defined here as the top-level container for all of the log messages to follow.

<?xml version="1.0" encoding="UTF-8"?>
<?xml-stylesheet type="text/xsl" href="uvm.xsl"?>
<log>

Figure 10 XML log header format

Similarly the log format is closed using a final tag, inserted in the report_footer function
in the extension of uvm_report_server. This function is the pair of report_header and
provides a useful entry point to close the log file and insert a final closing tag.

</log>

Figure 11 XML log footer format

Between the opening <log> and closing </log> tags, the custom report server inserts
tagged elements that represent each message output by the simulation. A message starts
with an opening <msg> tag that has several attributes associated with it. These attributes
are all of the meta-data that is defined for an UVM message. The main element of a
<msg> is the actual text of the message string. Anything else detected in a log is
considered a message coming from a non-UVM source so it can be easily extracted and
captured.

<msg verbosity="100" severity="UVM_INFO"
file="/home/gmcgregor/src/sv/uvm_latest/distrib/examples/integrated/ubus/sv/ubus_master_m
onitor.sv" line="205" id="uvm_test_top.ubus_example_tb0.ubus0.masters[0].monitor"
time="2580" >Covergroup cov_trans coverage: 32.083333</msg>

Figure 12 XML message format

6. Generating XML in SystemVerilog
The XML packaging for the message data is implemented in a very similar way to
modifying the normal message format. The main change is in the final compose message
function, which takes all the pieces of metadata and generates an appropriate XML
message element. We define two generator functions, xle() and xla() that are used to
compose the message, shown in Figure 13. xla() creates an attribute pair from a name
string and a value. xle() similarly creates the overall element tag and combines the
attributes and message string.

SNUG 2013 13 Applications of custom UVM report servers

 // Function: xla
 // XML Attribute
 // Generate an XML attribute (tag = "data")
 function string xla(string tag, string data);
 xla="";
 if (data != "") begin
 xla = {" ", tag, "=\"", sanitize(data), "\" "};
 end
 endfunction

 // Function: xle
 // XML Element
 // Generate an XML element (<tag attributes>data</tag>)
 function string xle(string tag, string data, string attributes="");
 xle = "";
 if (data != "") begin
 xle = {"<", tag, attributes, ">", sanitize(data), "</", tag, ">\n"};
 end
 endfunction

Figure 13 Generator functions for XML attributes and elements

Using these two generator functions, the final message is constructed as shown in Figure
14, bundling all of the metadata as attributes, attached to the message element.

 compose_xml_message = xle("msg", message,
 {xla("verbosity", verbosity_str),
 xla("severity", severity_string),
 xla("file", filename),
 xla("line", line_str),
 xla("id", id),
 xla("time", time_str),
 xla("context", name) });

Figure 14 Generating an XML element in SystemVerilog

One final thing that has to be considered is handling special case characters within XML
data. There are several reserved characters in XML that have special meaning, that need
to be translated to predefined strings. Those are listed in the replacements associative
array and the function sanitize() is used to switch any of these reserved characters within
the output messages or metadata.

string replacements[string] = '{ "<" : "<",
 "&" : "&",
 ">" : ">",
 "'" : "'",
 "\"": """
 };

 // Function: sanitize
 //
 // Given an unencoded input string, replaces illegal characters for XML data format
 function string sanitize(string data);

 for(int i = data.len()-1; i >= 0; i--) begin
 if (replacements.exists(data[i])) begin
 data = {data.substr(0,i-1), replacements[data[i]], data.substr(i+1, data.len()-
1)};
 end
 end
 return data;
 endfunction : sanitize

Figure 15 Handling special case characters for XML formating

SNUG 2013 14 Applications of custom UVM report servers

7. Custom Log Reconstruction
It is straightforward to write scripts to reconstruct a log file from an XML log generated
in the style described in Section 6. Figure 16 demonstrates how this can be done in the
Python scripting language. Python has standard libraries that can be used for XML
parsing and it is easy to write a filter that can parse and output a customizable view of
any given log.

from xml.etree.ElementTree import parse

data=parse('log.xml')
log=data.getroot()

for msg in log:
 if eval(msg.attrib['verbosity']) < 101:
 print msg.attrib['verbosity'], msg.attrib['severity'], msg.text

Figure 16 Python example of log file processing

This sort of scripted filtering can be useful for a variety of applications, producing a
standard text log that summarizes a test, for use in continuous integration tools. It can be
useful to provide a quick overview of what the flow was, while hiding much of the detail.
The script in Figure 16 is also a good basis for a log file scanner, checking for particular
known error conditions or other expected messages (e.g., an “END OF SIMULATION”
message that might be required to indicate a successful test completion)

8. GUI to Interactively Filter Messages
The static scripted parsing of log files discussed in the previous section is useful for many
applications. However, interactive manipulation of the log file is particularly powerful
when trying to debug a given failure. As a proof of concept a simple GUI viewer was
created. This GUI demonstrates the simplicity of the parser when using an XML log and
also the powerful features that can be enabled.
Dynamically reformatting the messages, as shown in Figure 17, is beneficial to the end
user. In the upper screenshot, the messages are formatted to show verbosity, timestamp,
context string and the text message itself. In the lower snapshot, the format string has
been changed to include the originating file and line, and the context string has been
removed. This change can be done using a dropdown box that contains a variety of
predefined formats, or a new format string can be typed into the same dropdown box.
This allows the messages to be tuned to suit a particular debugging task, instantly. It also
allows a user to see all of the metadata they are interested in, while easily hiding
additional information that is cluttering the log. Enhancements could provide all of the
relevant metadata for a log as a tooltip when the mouse cursor is hovered over a message.
As all of the metadata is available, it is relatively easy to link directly to the originating
point of the message in the source code.

SNUG 2013 15 Applications of custom UVM report servers

Figure 17 Example of dynamically reformatting a message

With the additional metadata present in the file, it is also possible to provide filtering
tools to collapse and expand the visible log messages, based on all of the metadata fields.
Figure 18 demonstrates filtering based on the verbosity of the message string, with the
upper screenshot showing messages at UVM_LOW or lower levels and the lower
screenshot showing the same portion of the log, with UVM_HIGH and lower levels of
verbosity enabled. Similarly, Figure 19 demonstrates filtering the message based on the
ID context of the log.

Figure 18 Example of filtering on verbosity

SNUG 2013 16 Applications of custom UVM report servers

Figure 19 Filtering on a message id

While this sort of filtering is possible in existing tools (with the exception of verbosity) it
is much simpler to provide a feature rich and flexible way of doing this using a markup
based log format. It is also simpler to implement useful features such as syntax
highlighting and hierarchical folding when the metadata is already separated.

9. Managing Large Log Files
Long simulation runs and high verbosity settings will produce extremely large log files. I
do not advocate always running at the UVM_DEBUG level of verbosity, but have found
it very useful to capture at a level one or two higher than is often used, then selectively
view the details using log viewers as described in this paper. Markup and XML in
particular actually make these larger log files potentially easier to manage. As individual
messages are demarked in the log with tags and parsed as units in the various XML tools,
it is simpler to step through larger log files and just show a view on the contents. Tools
do not have to read in the entire log but can operate on sliding windows to help reduce
the overhead of extremely large log files from long simulation runs. XML has two main
parsing styles, XML Document Object Model (DOM), which uses tree model and loads
the entire log and Simple API for XML (SAX) which parses the log using an event based,
callback model to only process one element at a time. SAX could potentially be used to
reduce the memory footprint of processing a large log. The examples provided in this
paper are all DOM based parsers.

It is also possible to use similar techniques as described in this paper to store the data in
an SQL or SQLite database rather than to XML. In that case, each message is tagged with
a unique id number and it is even simpler to manage iterating through the messages. SQL
has similar advantages of storing all of the metadata with the message and allowing later
reconstruction of the desired messages. An example of how to log to SQL is included in
the sample code made available along with this paper.

10. Conclusions and Future Work
The logging format and viewer have been implemented and have proven to be useful and
effective in debugging UVM simulations. Very little modification is required to an
existing testbench to implement this XML logging and it has a low overhead on the
simulation time, compared to normal logging. The viewer tools have also been useful in

SNUG 2013 17 Applications of custom UVM report servers

debugging and analyzing log reports more efficiently than with the existing plaintext
files.

The current implementation stores messages to a separate log containing the XML
messages, and leaves the normal unprocessed stdout log with UVM messages and any
messages from other parts of the simulation (DPI C-code, third-party IP that uses
$display messages and so on). Ideally, the stdout message log should contain the XML
markers so that non-UVM messages can be incorporated into any viewer tools. The
parser would then need to handle the exceptions caused by having these messages in the
file, as they would not be properly formatted XML. Any of these strings that cause
exceptions could be captured and stored in a non-UVM category that could be displayed
inline or filtered, appropriately. The current implementation of the viewer does not
implement this feature and should be added.
Also, the viewer should be able to support folding of messages (e.g., by verbosity) and it
is planned to add this feature. Similarly, syntax highlighting, or color-coding of sources,
highlighting numbers and similar pieces of interesting data will be implemented.
Optimizations to support larger log files and more efficiently parse the data need to be
implemented. XML parsers do provide mechanisms to handle large data sets efficiently,
but the current implementation of the viewer loads the entire log file into memory and
parses it. This could be more efficiently implemented.

11. Source Code
The source code for the XML logging report server along with examples using other
markup formats such as JSON, HTML and YAML are available online [6]. There is also
an SQLite logging implementation available.

12. References
1. UVM Accellera standard, http://www.accellera.org/downloads/standards/uvm
2. XML standard, http://www.w3.org/TR/REC-xml/
3. XSLT standard, http://www.w3.org/TR/xslt20/
4. DVE SmartLog, http://www.synopsys.com
5. DVT Eclipse Smart Log,

http://www.dvteclipse.com/documentation/sv/UVM_Smart_Log.html
6. UVM Logging source code, https://bitbucket.org/verilab/uvm_structured_logs

	

SNUG 2013 18 Applications of custom UVM report servers

13. Unified UVM_1_1 and UVM_1_2 XML Server
//--
// Copyright 2012 Verilab Inc.
// Gordon McGregor (gordon.mcgregor@verilab.com)
//
// All Rights Reserved Worldwide
//
// Licensed under the Apache License, Version 2.0 (the
// "License"); you may not use this file except in
// compliance with the License. You may obtain a copy of
// the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in
// writing, software distributed under the License is
// distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR
// CONDITIONS OF ANY KIND, either express or implied. See
// the License for the specific language governing
// permissions and limitations under the License.
//--

import uvm_pkg::*;
`include "uvm_macros.svh"

// Class: xml_report_server
//
// Replacement for uvm_report_server to log messages to an XML format
// that can be more easily reused and manipulated by external tools/ viewers
//
// Basic XML schema
// <log>
// <msg verbosity="val" severity="string" file="filename" line="val" id="string"
time="val" context="string(optional)">text</msg>
// ...
// <msg verbosity="val" severity="string" file="filename" line="val" id="string"
time="val" context="string(optional)">text</msg>
// <msg verbosity="val" severity="string" file="filename" line="val" id="string"
time="val" context="string(optional)">text</msg>
// ...
// </log>
//
class xml_report_server extends uvm_report_server;

 uvm_report_server old_report_server;
 uvm_report_global_server global_server;

 // characters that are invalid XML that have to be encoded
 string replacements[string] = '{ "<" : "<",
 "&" : "&",
 ">" : ">",
 "'" : "'",
 "\"": """
 };
 integer logfile_handle;

 //Function: new
 // constructor
 function new(string name = "xml_report_server", log_filename = "log.xml");
`ifdef UVM_VERSION_1_2
 super.new(name);
`else
 super.new();
 set_name(name);
`endif

 global_server = new();
 install_server();
 logfile_handle = $fopen(log_filename, "w");
 report_header(logfile_handle);

SNUG 2013 19 Applications of custom UVM report servers

 endfunction

 // Function: install_server
 // replace the global server with this server
 function void install_server;
 old_report_server = global_server.get_server();
 global_server.set_server(this);
 endfunction

 // Function: enable_xml_logging
 // Configure all components to use UVM_LOG actions to trigger XML capture
 // has to be called after components have been instantiated (end of elaboration, run
etc)
 function void enable_xml_logging(uvm_component base=null);
 uvm_root top;

 if (base == null) begin
 top = uvm_root::get();
 base = top;
 end

 base.set_report_default_file_hier(logfile_handle);
 base.set_report_severity_action_hier(UVM_INFO, UVM_DISPLAY | UVM_LOG);
 base.set_report_severity_action_hier(UVM_WARNING, UVM_DISPLAY | UVM_LOG);
 base.set_report_severity_action_hier(UVM_ERROR, UVM_DISPLAY | UVM_LOG | UVM_COUNT);
 base.set_report_severity_action_hier(UVM_FATAL, UVM_DISPLAY | UVM_LOG | UVM_EXIT);
 base.get_report_handler().dump_state();
 endfunction

 // Function: convert_verbosity_to_string
 // Helper function to convert verbosity value to appropriate string, based on
uvm_verbosity enum if an equivalent level
 function string convert_verbosity_to_string(int verbosity);
 uvm_verbosity l_verbosity;

 if ($cast(l_verbosity, verbosity)) begin
 convert_verbosity_to_string = l_verbosity.name();
 end else begin
 string l_str;
 l_str.itoa(verbosity);
 convert_verbosity_to_string = l_str;
 end
 endfunction

 // Function: report_header
 // Output standard XML header to log file
 function void report_header(UVM_FILE file = 0);
 f_display(file, "<?xml version=\"1.0\" encoding=\"UTF-8\"?>\n<?xml-stylesheet
type=\"text/xsl\" href=\"uvm.xsl\"?><log>\n");
 endfunction

 // Function: report_footer
 // Output XML closing tags to log file
 function void report_footer(UVM_FILE file = 0);
 f_display(file, "</log>");
 endfunction

`ifdef UVM_VERSION_1_2
 // Function: report_summarize
 // tidy up logging and restore global report server
 function void report_summarize(UVM_FILE file = 0);
`else
 // Function: summarize
 // tidy up logging and restore global report server
 function void summarize(UVM_FILE file = 0);
`endif
 report_footer(logfile_handle);
 global_server.set_server(old_report_server);
 $fclose(logfile_handle);
`ifdef UVM_VERSION_1_2
 old_report_server.report_summarize(file);
`else
 old_report_server.summarize(file);

SNUG 2013 20 Applications of custom UVM report servers

`endif
 endfunction

`ifdef UVM_VERSION_1_2
 // Function: execute_report_message
 //
 // Processes the message's actions.
 virtual function void execute_report_message(uvm_report_message report_message);
 if(uvm_action_type'(report_message.action) == UVM_NO_ACTION)
 return;

 // Update counts
 incr_severity_count(report_message.severity);
 incr_id_count(report_message.id);

 // Process UVM_RM_RECORD action (send to recorder)
 if(report_message.action & UVM_RM_RECORD) begin
 report_message.record_message(uvm_default_recorder);
 end

 // Process UVM_DISPLAY and UVM_LOG action (send to logger)
 if((report_message.action & UVM_DISPLAY) || (report_message.action & UVM_LOG)) begin
 // DISPLAY action
 if(report_message.action & UVM_DISPLAY) begin
 $display("%s", compose_report_message(report_message));
 end
 // LOG action
 // if log is set we need to send to the file but not resend to the
 // display. So, we need to mask off stdout for an mcd or we need
 // to ignore the stdout file handle for a file handle.
 if(report_message.action & UVM_LOG) begin
 if((report_message.file == 0) ||
 (report_message.file != 32'h8000_0001)) begin //ignore stdout handle
 UVM_FILE tmp_file = report_message.file;
 if((report_message.file & 32'h8000_0000) == 0) begin //is an mcd so mask off
stdout
 tmp_file = report_message.file & 32'hffff_fffe;
 end
 f_display(tmp_file, compose_log_report_message(report_message));
 end
 end
 end

 // Process the UVM_COUNT action
 if(report_message.action & UVM_COUNT) begin
 if(get_max_quit_count() != 0) begin
 incr_quit_count();
 // If quit count is reached, add the UVM_EXIT action.
 if(is_quit_count_reached()) begin
 report_message.action |= UVM_EXIT;
 end
 end
 end

 // Process the UVM_EXIT action
 if(report_message.action & UVM_EXIT) begin
 uvm_root l_root = uvm_root::get();
 l_root.die();
 end

 // Process the UVM_STOP action
 if (report_message.action & UVM_STOP)
 $stop;

 endfunction
`else
 // Function: process_report
 //
 // Processes the message's actions.
 virtual function void process_report(
 uvm_severity severity,
 string name,
 string id,

SNUG 2013 21 Applications of custom UVM report servers

 string message,
 uvm_action action,
 UVM_FILE file,
 string filename,
 int line,
 string composed_message,
 int verbosity_level,
 uvm_report_object client
);
 // update counts
 incr_severity_count(severity);
 incr_id_count(id);

 if(action & UVM_DISPLAY)
 $display("%s",composed_message);

 // if log is set we need to send to the file but not resend to the
 // display. So, we need to mask off stdout for an mcd or we need
 // to ignore the stdout file handle for a file handle.
 if(action & UVM_LOG)
 if((file == 0) || (file != 32'h8000_0001)) //ignore stdout handle
 begin
 UVM_FILE tmp_file = file;
 if((file&32'h8000_0000) == 0) //is an mcd so mask off stdout
 begin
 tmp_file = file & 32'hffff_fffe;
 end
 composed_message = compose_xml_message(severity, verbosity_level, name, id,
message, filename, line);
 f_display(tmp_file, composed_message);
 end

 if(action & UVM_EXIT) client.die();

 if(action & UVM_COUNT) begin
 if(get_max_quit_count() != 0) begin
 incr_quit_count();
 if(is_quit_count_reached()) begin
 client.die();
 end
 end
 end

 if (action & UVM_STOP) $stop;

 endfunction
`endif

 // Function: sanitize
 //
 // Given an unencoded input string, replaces illegal characters for XML data format
 function string sanitize(string data);

 for(int i = data.len()-1; i >= 0; i--) begin
 if (replacements.exists(data[i])) begin
 data = {data.substr(0,i-1), replacements[data[i]], data.substr(i+1, data.len()-
1)};
 end
 end
 return data;
 endfunction : sanitize

 // Function: xla
 // XML Attribute
 // Generate an XML attribute (tag = "data")
 function string xla(string tag, string data);
 xla="";
 if (data != "") begin
 xla = {" ", tag, "=\"", sanitize(data), "\" "};
 end
 endfunction

 // Function: xle

SNUG 2013 22 Applications of custom UVM report servers

 // XML Element
 // Generate an XML element (<tag attributes>data</tag>)
 function string xle(string tag, string data, string attributes="");
 xle = "";
 if (data != "") begin
 xle = {"<", tag, attributes, ">", sanitize(data), "</", tag, ">\n"};
 end
 endfunction

`ifdef UVM_VERSION_1_2
 // Function: compose_log_report_message
 // Generate the XML encapsulated report message, for logging
 function string compose_log_report_message(uvm_report_message report_message);
 string severity_string;
 string verbosity_str;
 string time_str;
 string line_str;
 string context_str;

 severity_string = report_message.severity.name();
 void'(verbosity_str.itoa(report_message.verbosity));
 void'(line_str.itoa(report_message.line));
// Make definable in terms of units.
 $swrite(time_str, "%0t", $time);

 compose_log_report_message = xle("msg", report_message.convert2string(),
 {xla("verbosity", verbosity_str),
 xla("severity", severity_string),
 xla("file", report_message.filename),
 xla("line", line_str),
 xla("id", report_message.id),
 xla("time", time_str),
 xla("context", report_message.context_name) });

 endfunction
`else
 // Function: compose_xml_message
 // Generate the XML encapsulated report message, for logging
 virtual function string compose_xml_message(
 uvm_severity severity,
 int verbosity,
 string name,
 string id,
 string message,
 string filename,
 int line
);
 uvm_severity_type sv;
 string severity_string;
 string time_str;
 string line_str;
 string verbosity_str;

 sv = uvm_severity_type'(severity);
 severity_string = sv.name();
 $swrite(time_str, "%0t", $time);
 void'(line_str.itoa(line));
 void'(verbosity_str.itoa(verbosity));

 compose_xml_message = xle("msg", message,
 {xla("verbosity", verbosity_str),
 xla("severity", severity_string),
 xla("file", filename),
 xla("line", line_str),
 xla("id", id),
 xla("time", time_str),
 xla("context", name) });
 endfunction
`endif
endclass

SNUG 2013 23 Applications of custom UVM report servers

14. Deployment of XML report server

`include "xml_report_server.svh"

class example_base_test extends uvm_test;

 `uvm_component_utils(example_base_test)
 xml_report_server xml_server = new();

SNUG 2013 24 Applications of custom UVM report servers

15. UVM XML Style sheet for log parsing

<?xml version="1.0" encoding="UTF-8"?>
<xsl:stylesheet version="1.0" xmlns:xsl="http://www.w3.org/1999/XSL/Transform">

<xsl:template match="/">
 <html>
 <body>
 <h2>UVM Log</h2>
 <table border="1">
 <tr bgcolor="#9acd32">
 <th>Severity</th>
 <th>Verbosity</th>
 <th>Time</th>
 <th>Text</th>
 </tr>
 <xsl:for-each select="log/msg[@verbosity < 401]">
 <tr>
 <td><xsl:value-of select="@severity"/></td>
 <td><xsl:value-of select="@verbosity"/></td>
 <td><xsl:value-of select="@time"/></td>
 <td><xsl:attribute name="title"><xsl:value-of
select="@file"/></xsl:attribute> <pre><xsl:value-of select="."/></pre></td>
 </tr>
 </xsl:for-each>
 </table>
 </body>
 </html>
</xsl:template>
</xsl:stylesheet>

SNUG 2013 25 Applications of custom UVM report servers

16. Python XML Log viewer

#!/usr/bin/env python3
from tkinter import *
from tkinter.ttk import *
from tkinter.simpledialog import askstring
from tkinter.filedialog import asksaveasfilename

from tkinter.messagebox import askokcancel

from xml.etree.ElementTree import parse

import string

DEFAULT_FORMATS = ("${severity}::${verbosity_str} ${file}(${line}) @ ${time} : ${context}
[${id}] ${msg}",
 "${verbosity_str} @ ${time} : ${context} [${id}] ${msg}",
 "${time} : ${context} ${msg}")

uvm_verbosities = {"UVM_NONE":0, "UVM_LOW":100, "UVM_MEDIUM":200, "UVM_HIGH":300,
"UVM_FULL":400, "UVM_DEBUG":500}
uvm_verbosity_strings = {uvm_verbosities[v]:v for v in uvm_verbosities}

class ScrolledText(Frame):
 def __init__(self, parent=None, text='', file=None):
 Frame.__init__(self, parent)
 self.pack(expand=YES, fill=BOTH)
 self.makewidgets()
 self.settext()
 def makewidgets(self):
 self.sbar = Scrollbar(self)

 text = Text(self, relief=SUNKEN)
 self.sbar.config(command=text.yview)
 text.config(yscrollcommand=self.sbar.set)
 self.status = StringVar()
 self.status_widget = Label(self, textvar = self.status, relief=SUNKEN)
 self.status.set('status bar')
 self.status_widget.config(font=('courier', 10, 'normal'))
 self.status_widget.pack(side=BOTTOM, fill=X)
 self.sbar.pack(side=RIGHT, fill=Y)
 text.pack(side=LEFT, expand=YES, fill=BOTH)
 self.text = text

 def settext(self):
 self.text.config(state=NORMAL)
 scroll_location = self.text.yview()
 if self.file:
 text = self.parse_log()
 self.text.delete('1.0', END)
 self.text.insert('1.0', text)
 self.text.mark_set(INSERT, '1.0')
 self.text.focus()
 self.text.config(state=DISABLED)
 self.text.yview('moveto', scroll_location[0])

 def gettext(self):
 return self.text.get('1.0', END+'-1c')

 def parse_log(self):
 log_data = ""
 data=parse(self.file)
 log=data.getroot()
 verbosity_value = 101
 verbosity_level = self.verbosity.get()
 if verbosity_level in uvm_verbosities:
 verbosity_value = uvm_verbosities[verbosity_level] + 1

 severity_value = self.severity.get()

SNUG 2013 26 Applications of custom UVM report servers

 context_value = self.context.get()
 id_value = self.id.get()
 source_file_value = self.filer.get()

 message_template = string.Template(self.format.get() + '\n')
 for msg in log:
 if eval(msg.attrib['verbosity']) < verbosity_value:

 if context_value != ' ':
 if msg.attrib['context'] != context_value:
 continue

 if id_value != ' ':
 if msg.attrib['id'] != id_value:
 continue
 if source_file_value != ' ':
 if msg.attrib['file'] != source_file_value:
 continue
 if severity_value != ' ':
 if msg.attrib['severity'] != severity_value:
 continue
 try:
 verbosity_string = uvm_verbosity_strings[eval(msg.attrib['verbosity'])]
 except:
 verbosity_string = msg.attrib['verbosity']
 log_data += message_template.substitute({x:msg.attrib[x] for x in
msg.keys()}, verbosity_str = verbosity_string, msg=msg.text)
 return log_data

 def pre_parse_log(self):
 data=parse(self.file)
 log=data.getroot()

 severity_set = set()
 file_set = set()
 id_set = set()
 context_set = set()
 for msg in log:
 severity_set.add(msg.attrib['severity'])
 file_set.add(msg.attrib['file'])
 id_set.add(msg.attrib['id'])
 context_set.add(msg.attrib['context'])

 return(severity_set, file_set, id_set, context_set)

class SimpleEditor(ScrolledText):
 def __init__(self, parent=None, file=None):
 self.root = Tk()
 self.file = file
 frm = Frame(parent)
 self.root.title(self.file)

 frm.pack(fill=X)

 self.format = StringVar()
 self.format_widget = Combobox(frm, values = DEFAULT_FORMATS, textvar =
self.format)
 self.format_widget.pack(side=BOTTOM, fill=X)

 self.format_widget.current(0)

 self.format_widget.bind('<Return>', self.updateLog)
 self.format_widget.bind('<<ComboboxSelected>>', self.updateLog)

 Button(frm, text='Find', command=self.onFind).pack(side=LEFT)

 (severity_set, file_set, id_set, context_set) = self.pre_parse_log()

 values = list(uvm_verbosities.keys())
 values.sort(key = lambda x:uvm_verbosities[x])
 self.verbosity = Combobox(frm, values = values , state='readonly')

SNUG 2013 27 Applications of custom UVM report servers

 self.verbosity.bind('<<ComboboxSelected>>', self.updateLog)
 self.verbosity.set("UVM_LOW")
 self.verbosity.pack(side=LEFT)

 severities = list(severity_set)
 severities.sort()
 self.severity = Combobox(frm, values = [' ',] + severities, state='readonly')
 self.severity.current(0)
 self.severity.bind('<<ComboboxSelected>>', self.updateLog)
 self.severity.pack(side=LEFT)

 contexts = list(context_set)
 contexts.sort()
 self.context = Combobox(frm, values = [' ',] + contexts, state='readonly')
 self.context.current(0)
 self.context.bind('<<ComboboxSelected>>', self.updateLog)
 self.context.pack(side=LEFT, expand=YES, fill=X)

 ids = list(id_set)
 ids.sort()
 self.id = Combobox(frm, values = [' ',] + ids, state='readonly')
 self.id.current(0)
 self.id.bind('<<ComboboxSelected>>', self.updateLog)
 self.id.pack(side=LEFT, expand=YES, fill=X)

 files = list(file_set)
 files.sort()
 self.filer = Combobox(frm, values = [' ',] + files, state='readonly')
 self.filer.current(0)
 self.filer.bind('<<ComboboxSelected>>', self.updateLog)
 self.filer.pack(side=LEFT, expand=YES, fill=X)

 Button(frm, text='Quit', command=frm.quit).pack(side=LEFT)

 ScrolledText.__init__(self, parent, file=file)
 self.text.config(font=('courier', 12, 'normal'))

 def onFind(self):
 target = askstring('SimpleEditor', 'Search String?')
 if target:
 where = self.text.search(target, INSERT, END)
 if where:
 print(where)
 pastit = where + ('+%dc' % len(target))
 self.text.tag_add(SEL, where, pastit)
 self.text.mark_set(INSERT, pastit)
 self.text.see(INSERT)
 self.text.focus()

 def updateLog(self, *args):
 self.status.set(self.verbosity.get())
 self.settext()

if __name__ == '__main__':
 try:
 SimpleEditor(file=sys.argv[1]).mainloop()
 except IndexError:
 SimpleEditor().mainloop()

